数学参考答案和评分标准

一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 【答案】B

【命题意图】本题考查集合的关系, 意在考查学生的逻辑推理和数学抽象素养.

【解析】因为 $A\cap (C_{i,B})=\emptyset$, 所以 $A\subseteq B$, 因此B正确. 故选B

2. 【答案】D

【命题意图】本题考查复数的运算, 意在考查学生对基础知识的掌握程度.

【解析】因为
$$z(1-i)=1+2i$$
 ,所以 $z=\frac{(1+2i)(1+i)}{(1-i)(1+i)}=\frac{-1+3i}{2}=-\frac{1}{2}+\frac{3}{2}i$,所以 $1+\overline{z}=1-\frac{1}{2}-\frac{3}{2}i=\frac{1}{2}-\frac{3}{2}i$,所以 $1+\overline{z}$ 在复平面内对应的点在第四象限. 故选 D.

3. 【答案】B

【命题意图】本题考查充分必要条件,并融合函数,数列和解三角形等知识,考查学生对基本知识的融合和掌握情况.

【解析】选项 A, a=1 时, 函数 $f(x)=x^2-(1-a^2)x+3$ 是偶函数, 但函数

 $f(x)=x^2-(1-a^2)x+3$ 是偶函数,可得 $a=\pm 1$,故 P是 Q 的充分不必要条件;选项 B,在 \triangle ABC 中, \triangle ABC 是等边三角形可得 $\sin A=\sin B=\sin C$, 当 $\sin A=\sin B=\sin C$ 时, \triangle ABC 是等边三角形,所以 P和 Q 互为充要条件;选项 C,数列 $\{a_n\}$ 的前 n 项和 $S_n=2n^2-3n+1$,可得数列不是等差数列,当数列 $\{a_n\}$ 是公差为 2 的等差数列时,因为不知首项,所以数列 $\{a_n\}$ 的前 n 项和 S_n 不确定,所以 P是 Q 的既不充分也不必要条件;因为 x>1 可得 $x+\frac{1}{x}\geq 2$,当 $x+\frac{1}{x}\geq 2$ 时,可得 x>0,所以故 P是 Q 的充分不必要条件,故选 B.

4. 【答案】D

【命题意图】本题考查计数原理, 意在考查学生对日常生活中事物的认知和数学应用的思想.

【解析】依题意,由于四条升腾之龙位置可以不同,四条降沉之龙相对位置也可以不同,

但升腾之龙必须位居第 1, 3, 7, 9 位置, 降沉之龙必须位居第 2, 4, 6, 8 位置, 所以不同的雕刻模型共有 $A_{\bullet}^{4} \cdot A_{\bullet}^{4}$ 种.

5. 【答案】A

【解析】由图象可知,则
$$\frac{T}{4} = \frac{7\pi}{12} - \frac{\pi}{3}$$
,所以 $T = \pi$,又 $\frac{2\pi}{\omega} = \pi$, $\omega = 2$;

所以
$$f(x) = -\sqrt{2}\sin(2x+\varphi)$$
 过点 $(\frac{7\pi}{12}, -\sqrt{2})$,

所以
$$2 \times \frac{7\pi}{12} + \varphi = 2k\pi + \frac{\pi}{2}$$
, 所以 $\varphi = 2k\pi + \frac{\pi}{2} - \frac{7\pi}{6}$, 又 $|\varphi| < \pi$, 所以 $\varphi = -\frac{2\pi}{3}$,

所以
$$f(x) = -\sqrt{2}\sin(2x - \frac{2\pi}{3})$$
,

当
$$2k\pi + \frac{\pi}{2} \le 2x - \frac{2\pi}{3} \le 2k\pi + \frac{3\pi}{2}$$
, 即 $k\pi + \frac{7\pi}{12} < x < k\pi + \frac{13\pi}{12} (k \in \mathbf{Z})$ 时,函数单调递

增. 结合选项可知, 答案应选 A.

6. 【答案】C

【命题意图】本题考查双曲线的几何性质和直线与双曲线的位置关系, 意在考查学生的数学抽象和数学运算能力.

【解析】设P,Q的坐标分别为 $\left(x_1,y_1\right)$, $\left(x_2,y_2\right)$,

因为线段 PQ 的中点为(1,2), 所以 $x_1 + x_2 = 2$, $y_1 + y_2 = 4$,

因为
$$\frac{x_1^2}{4} - y_1^2 = 1$$
, $\frac{x_2^2}{4} - y_2^2 = 1$, 所以 $\frac{(x_1 - x_2)(x_1 + x_2)}{4} - (y_1 - y_2)(y_1 + y_2) = 0$,

整理得 $\frac{y_1-y_2}{x_1-x_2}=\frac{1}{8}$, 即直线 l 的斜率为 $\frac{1}{8}$, 所以直线 l 的方程为 $y-2=\frac{1}{8}(x-1)$, 即 x-8y+15=0.

7. 【答案】B

【命题意图】本题考查统计图表的认识, 意在考查学生对读图, 识图, 数据收集和数据处理的能力.

【解析】对于 A, 国六 B 阶段比国六 A 阶段对 PN 颗粒物排放量要求相同, 故 A 错误; 对于 B, 三款车无论以什么样的相同速度行驶, 甲车消耗汽油最少, 故 B 正确; 对于 C, 由图象可知, 乙车以 80 千米/小时的速度行驶 1 小时, 消耗汽油超过 10 升; 对于 D, 甲车以 80 千米/小时的速度行驶 10km 需要消耗汽油约 1 升, 故 D 错误. 故选 B.

8. 【答案】D

【命题意图】本题考查正态分布, 意在考查学生对正态分布密度函数的图象与概率分布的理解.

【解析】由正态分布密度函数可知, $P(X_1 \leq \mu_2) > P(X_2 \leq \mu_1)$,

$$P(X_2 \geqslant \mu_2) = P(X_3 \geqslant \mu_3), P(X_1 \leqslant \mu_2) > P(X_2 \leqslant \mu_3),$$

$$P(\mu_i - 2\sigma_i \leq X_i \leq \mu_i + 2\sigma_i) = P(\mu_{i+1} - 2\sigma_{i+1} \leq X_{i+1} \leq \mu_{i+1} + 2\sigma_{i+1})$$
, 故答案选 D.

二、选择题:本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的选项中,有多项符合题目要求。全部选对的得 5 分,有选错的得 0 分,部分选对的得 2 分。

9. 【答案】AB.

【命题意图】本题考查解三角形, 意在考查正余弦定理的应用和数学抽象素养.

【解析】因为
$$B=2C$$
,所以 $\sin B=\sin 2C$,即 $\sin B=2\sin C\cos C$,又 $c=\frac{\sqrt{3}}{2}b$

所以
$$\cos C = \frac{\sqrt{3}}{3}$$
,所以 $\sin C = \frac{\sqrt{6}}{3}$,由余弦定理可知, $c^2 = a^2 + b^2 - 2ab\cos C$,化简

得到 $a^2-4a+3=0$,解得a=3或a=1,

若
$$a=3$$
, 故 $A=C=\frac{\pi}{4}$, 故 $B=\frac{\pi}{2}$, 不满足, 故 $a=1$.

$$S_{\triangle ABC} = \frac{1}{2}ab\sin C = \frac{1}{2} \times 1 \times 2\sqrt{3} \times \frac{\sqrt{6}}{3} = \sqrt{2}.$$

故选 AB.

10. 【答案】AD

【命题意图】本题考查等比数列的性质, 意在考查学生数学运算素养.

【解析】因为公比为
$$q>1$$
,由 $\begin{cases} a_5-a_1=15,\\ a_2\cdot a_4=16, \end{cases}$ 得 $\begin{cases} a_1q^4-a_1=15,\\ a_1q\cdot a_1q^3=16, \end{cases}$ 即 $\frac{q^4-1}{q^2}=\frac{15}{4}$,所以

$$4q^4-15q^2-4=0$$
,解之得 $q^2=4$,所以 $\begin{cases} a_1=1,\\ q=2 \end{cases}$,所以 $a_n=2^{n-1}$, $S_n=2^n-1$,所

以
$$S_{n+1} = 2^{n+1} - 1 = 2S_n + 1$$
, $S_n + 1 = 2^n$, 所以 $\log_3(S_n + 1) = n\log_3 2$, 所以数列

$$\{\log_3(S_n+1)\}$$
 是等差数列,对任意的正整数 n,k , $S_{n+k}-S_n=2^{n+k}-2^n=(2^k-1)2^n$,

所以数列 $\log_2(S_{n+k}-S_n)=n+\log_2(2^k-1)$,因为所以数列 $\{\log_2(S_{n+k}-S_n)\}$ 是公差为 1 的等差数列,故正确的为 AD.

11. 【答案】BCD

【命题意图】本题考查平面向量的基本运算, 意在考查学生对基本运算和基础知识的掌握情况.

【解析】因为向量 $\mathbf{a} = (1, \sin \theta)$, $\mathbf{b} = (\cos \theta, \sqrt{2})(0 \le \theta \le \pi)$, 若 $\mathbf{a}//\mathbf{b}$, 则 $\cos \theta \sin \theta = \sqrt{2}$, 这样的 θ 不存在, 故 A 错误; 若 $|\mathbf{a}| = |\mathbf{b}|$, 即 $1 + \sin^2 \theta = \cos^2 \theta + 2$, 所以

 $1+\sin^2\theta=1-\sin^2\theta+2$,所以 $\sin^2\theta=1$,所以B正确; 当 $\boldsymbol{a}\cdot\boldsymbol{b}=\sqrt{3}$ 时,

$$\cos\theta + \sqrt{2}\sin\theta = \sqrt{3}\sin(\theta + \varphi)$$
 , 其中 $\cos\varphi = \frac{\sqrt{6}}{3}$, $\sin\varphi = \frac{\sqrt{3}}{3}$, 且 $\theta + \varphi = \frac{\pi}{2}$, 所以

 $\sin\theta = \cos\varphi = \frac{\sqrt{6}}{3}$, 故 C 正确; 因为 $\tan\theta = -\frac{\sqrt{2}}{2}$ 时, $\boldsymbol{a} \cdot \boldsymbol{b} = \cos\theta + \sqrt{2}\sin\theta = \boldsymbol{0}$,故 D 正确; 故选 BCD.

12. 【答案】ABC

【命题意图】本题考查函数的奇偶性,单调性,对称性等函数性质,意在考查学生的数学抽象和逻辑推理素养.

【解析】由f(x)为奇函数,f(-x)=f(x+1),所以函数f(x)关于直线 $x=\frac{1}{2}$ 对称

所以
$$f(x) = -f(x+1) = -[-f(x+2)] = f(x+2)$$
, 故周期 $T = 2$, 当 $0 \le x \le \frac{1}{2}$ 时,

$$f(x) = \log_2(1+x)$$
, 所以 $f(1) = f(0) = f(2) = 0$, 所以 $i \in \mathbb{N}^*$, 则 $\sum_{i=1}^n f(i) = 0$; 点

$$(-1,0)$$
 为 $f(x)$ 的一个对称中心,所以 $\sum_{i=1}^{2021} f(\frac{i}{2}) = \log_2 \frac{3}{2}$,可得 $\sum_{i=1}^{2021} f(\frac{i}{2}) \neq \log_2 (\frac{3}{2})^{1011}$,故

三、填空题:本题共4小题,每小题5分,共20分。

13. 【答案】45

选 ABC.

【命题意图】本题考查二进制数和数学文化想结合的问题, 意在考查学生的阅读理解能力.

【解析】六十四卦中符号"离卦="表示二进制数的 101101,对应十进制数的计算为 $1\times 2^0 + 0\times 2^1 + 1\times 2^2 + 1\times 2^3 + 0\times 2^4 + 1\times 2^5 = 45$.

14. 【答案】 y = 2x - 4 y = -1

【命题意图】本题考查抛物线的几何形状以及直线与抛物线的位置关系.

【解析】已知直线过点(0,-4),且倾斜角的余弦值为 $\frac{\sqrt{5}}{5}$,所以正切值为 2,可得直线

方程为 y=2x-4. 联立得方程组 $\begin{cases} x^2=2py(p>0)\\ y=2x-4 \end{cases}$,可得 $x^2-4px+8p=0$,又直线与抛物

线相切, 所以 $\Delta=16p^2-32p=0$, 解得p=2, 所以抛物线的准线方程为y=-1.

15. 【答案】乙

【命题意图】本题考查推理与证明, 意在考查学生的逻辑推理素养.

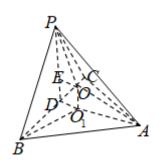
【解析】因为三人中,只有一个人喝酒也只有一个人说的是真话,如果甲说的是真话,那么乙说的也是真话,得出矛盾的;如果乙说的是真话,那么丙和甲说的都是假话,且喝酒的是甲或丙,如果是甲喝酒,则有至少两个人说的是真话,如果是乙丙喝酒了,甲说的是假话,但是丙说的是真话,这是矛盾的;如果丙说的是真话,那么甲说的是假话,乙说的也是假话,所以喝酒的是乙.

16. 【答案】
$$\frac{2\sqrt{2}+\sqrt{5}}{3}$$

【命题意图】本题考查空间几何体的外接球问题, 意在考查学生的空间想象能力和数学运算素养.

【解析】如图所示,点P 在过直线BC 与平面ABC 垂直的球的小圆面的圆周上,当点P 在平面ABC 的射影为BC 中点时,三棱锥P-ABC 的体积最大。设等边 $\triangle ABC$ 的中心为 O_1 ,三棱锥P-ABC 的四个顶点都在球O上,球O 的体积为 $4\sqrt{3}\pi$,所以外接球的半径为 $r=\sqrt{3}$,因为 $\triangle ABC$ 的边长为 2,点P 在 $\triangle ABC$ 所在平面内的射影恰好在边BC 上设为D,过O作OE \bot PD,垂足为E,依题意可知, $O_1D=\frac{\sqrt{3}}{3}=EO$,所以

$$PE = \sqrt{PO^2 - EO^2} = \frac{2\sqrt{6}}{3}$$
 , $OO_1 = \sqrt{AO^2 - AO_1^2} = \frac{\sqrt{15}}{3}$, 所以三棱锥 $P - ABC$ 体积的最大值为 $\frac{2\sqrt{2} + \sqrt{5}}{3}$.



四、解答题:本题共 6 小题,共 70 分。解答应写出文字说明、证明过程或演算步骤。 17. (10 分)

【解析】选条件① $S_{15} = 120$,

(1) 由题意得
$$S_{15} = \frac{15(a_1 + a_{15})}{2} = 120$$
, 即 $a_{15} = 15$,

又 $a_1 = 1$,得公差d = 1,通项公式为 $a_n = n$. ……5分

(2) 由 (1) 得
$$S_n = \frac{n(1+n)}{2}$$
. 可得 $\frac{1}{S_n} = \frac{2}{n(1+n)} = 2(\frac{1}{n} - \frac{1}{n+1})$,

所以
$$T_n = \frac{1}{S_1} + \frac{1}{S_2} + \dots + \frac{1}{S_n} = 2[(1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{n} - \frac{1}{n+1})] = \frac{2n}{n+1}$$
......10

分

选条件② $a_5 + a_7 = 12$,

(1) 由题意得
$$a_5 + a_7 = 12 = a_1 + 4d + a_1 + 6d = 12$$
,

又 $a_1 = 1$,得公差d = 1,通项公式为 $a_n = n$. ……5分

(2) 由 (1) 得
$$S_n = \frac{n(1+n)}{2}$$
. 可得 $\frac{1}{S_n} = \frac{2}{n(1+n)} = 2(\frac{1}{n} - \frac{1}{n+1})$

所以
$$T_n = \frac{1}{S_1} + \frac{1}{S_2} + \dots + \frac{1}{S_n} = 2[(1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{n} - \frac{1}{n+1})] = \frac{2n}{n+1} \dots \dots 10$$
分

选择条件③
$$\frac{S_5}{5} - \frac{S_2}{2} = \frac{3}{2}$$
,

(1) 由题意得
$$\frac{a_5 - a_2}{2} = \frac{3}{2}$$
,

又 $a_1 = 1$,得公差d = 1,通项公式为 $a_n = n$. ……5分

(2) 由 (1) 得
$$S_n = \frac{n(1+n)}{2}$$
. 可得 $\frac{1}{S_n} = \frac{2}{n(1+n)} = 2(\frac{1}{n} - \frac{1}{n+1})$

所以
$$T_n = \frac{1}{S_1} + \frac{1}{S_2} + \dots + \frac{1}{S_n} = 2[(1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{n} - \frac{1}{n+1})] = \frac{2n}{n+1} \cdot \dots \cdot \dots \cdot 10$$

分

18. (12分)

【解析】(1) 因为
$$\tan A = \frac{\sqrt{3}}{3}$$
,所以 $\cos A = \frac{\sqrt{3}}{2}$,……2 分

由余弦定理得 $a^2 = b^2 + c^2 - 2bc\cos A = 7$, 即 $b^2 - 3b - 4 = 0$,

所以b=4或b=-1(舍). ……5分

$$(2) : \frac{S_{\triangle ABD}}{S_{\triangle ABC}} = \frac{1}{3}, : \frac{S_{\triangle ABD}}{S_{\triangle ACD}} = \frac{1}{2},$$

$$\therefore \angle CAD = \angle BAD, \ \therefore \frac{c}{b} = \frac{1}{2}.$$

所以,
$$c^2 = \frac{4}{5 - 2\sqrt{3}}$$
,……10 分

$$\therefore S_{\triangle ABC} = \frac{1}{2}bc\sin A = \frac{1}{2}2c^2 \cdot \frac{1}{2} = \frac{2}{5 - 2\sqrt{3}}.$$

.

19. (12分)

【解析】(1) 设"甲至多命中1次"为事件C,则

$$P(C) = C_3^0 (1 - \frac{1}{3})^3 + C_3^1 \frac{1}{3} (1 - \frac{1}{3})^2 = \frac{20}{27}.$$

所以,甲至多命中 1 次的概率为 $\frac{20}{27}$ 4 分

(2) 由题意,
$$X = 0,2,3,5$$
, $Y = 0,2,3,5$, ……6分

$$P(X=0) = (1-\frac{1}{3})^2 = \frac{4}{9}$$
, $P(X=2) = P(X=3) = \frac{1}{3}(1-\frac{1}{3}) = \frac{2}{9}$,

$$P(X=5) = (\frac{1}{3})^2 = \frac{1}{9}$$
,

$$P(Y=0) = [1-(1-p)][1-(1-2p)] = 2p^2$$
,

$$P(X = 2) = (1-p)[1-(1-2p)] = 2p-2p^2$$
,

$$P(X=3) = [1-(1-p)](1-2p) = p-2p^2$$
,

∴ X 的分布列为

$\begin{array}{c cccc} P & \frac{4}{9} & \frac{2}{9} & \frac{2}{9} & \frac{1}{9} \end{array}$

Y的分布列为

Y	0	2	3	5
P	$2p^2$	$2p-2p^2$	$p-2p^2$	$2p^2 - 3p + 1$

所以,
$$E(X) = 0 \times \frac{4}{9} + 2 \times \frac{2}{9} + 3 \times \frac{2}{9} + 5 \times \frac{1}{9} = \frac{5}{3}$$
,

$$(3) :: E(X) > E(Y),$$

$$\therefore 5 - 8p < \frac{5}{3}, \quad \mathbb{F} p > \frac{5}{12}.$$

所以,
$$P$$
的取值范围是 $(\frac{5}{12},\frac{1}{2}]$. ……12分

20. (12分)

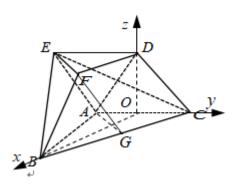
【解析】(1) 证明: 因为DE//AC, DF//BC, ΔABC 是等边三角形, 所以

$$\angle EDF = \angle ACB = 60^{\circ}$$
, $\nearrow AC = DE = BC = 2DF = 2$,4 $\cancel{\pi}$

所以 ΔEDF 中,

由余弦定理可知,
$$EF = \sqrt{2^2 + 1^2 - 2 \times 1 \times 2 \times \cos 60^\circ} = \sqrt{3}$$
,所以 $EF \perp DF$,

(2) 设线段AC中点为O,分别连接BO,DO.



- ∴ $\triangle ABC$ 与 $\triangle ACD$ 都是等边三角形,
- $\therefore BO \perp AC$, $DO \perp AC$, 即 $\angle BOD$ 就是二面角 D-AC-B 的平面角. 由于二面角

D-AC-B是直二面角,因此, $/BOD=90^{\circ}$ 。………8分

分别以直线 OB, OC, OD 为 x 轴, Y 轴和 z 轴, 建立如图所示的空间坐标系 O-xyz.

|AC|=2,

$$\therefore A(0,-1,0), B(\sqrt{3},0,0), E(0,-2,\sqrt{3}), G(\frac{\sqrt{3}}{2},\frac{1}{2},0),$$

$$\overrightarrow{BE} = (-\sqrt{3}, -2, \sqrt{3}), \quad \overrightarrow{EF} = \overrightarrow{AG} = (\frac{\sqrt{3}}{2}, \frac{3}{2}, 0).$$

设平面 BEF 的一个法向量为 $\mathbf{n} = (x, y, \mathbf{z})$,则 $\mathbf{n} \perp \overrightarrow{BE}$, $\mathbf{n} \perp \overrightarrow{EF}$,即 $\mathbf{n} \cdot \overrightarrow{BE} = 0$,

$$\mathbf{n}\cdot\overrightarrow{EF}=0$$
,

$$\therefore \begin{cases} -\sqrt{3}x - 2y + \sqrt{3}z = 0, \\ \frac{\sqrt{3}}{2}x + \frac{3}{2}y = 0. \end{cases}$$

$$\vec{X} \overrightarrow{OB} = (\sqrt{3}, 0, 0)$$
,

$$\cos \langle n, \overrightarrow{OB} \rangle = \frac{n \cdot \overrightarrow{OB}}{\langle n/| \overrightarrow{OB}|} = \frac{3}{\sqrt{3} \times \sqrt{\frac{13}{3}}} = \frac{3}{\sqrt{13}},$$

$$\therefore \tan \langle n, \overrightarrow{OB} \rangle = \frac{2}{3}.$$

由于 $\overrightarrow{OB} = (\sqrt{3},0,0)$ 是平面ACDE的一个法向量,所以,平面ACDE与平面BEF所

成锐二面角的正切值为 $\frac{2}{3}$12分

21. (12分)

【解析】(1) 由函数 $f(x) = \ln x + \frac{2a}{x}$ 得, 函数 f(x) 定义域为 $(0, +\infty)$,

$$f'(x) = \frac{x - 2a}{x^2} \cdot \cdots \cdot 2 \, \hat{x}$$

当 $a \leq 0$ 时,f'(x) > 0,f(x)是增函数.

当a>0时, 若0< x< 2a, 则f'(x)< 0, f(x)是减函数; 若x> 2a, 则f'(x)> 0,

f(x) 是增函数. ……4 分

综上所述, 当 $a \leq 0$ 时, f(x) 是增函数 (也可以说成是 $(0,+\infty)$ 上的增函数);

当 a > 0 时,f(x) 在区间(0,2a]是减函数,在区间 $[2a,+\infty)$ 是增函数. ·········6分

$$\mathbb{M} F'(x) = \ln x + \frac{1}{2}, \quad G'(x) = \frac{1-x}{e^x}.$$

同 (1) 可知,
$$F(x)_{\min} = F(\frac{1}{\sqrt{e}}) = 2a - \frac{1}{\sqrt{e}}$$
, $G(x)_{\max} = G(1) = \frac{1}{e}$. ………10分

由于
$$a \ge \frac{1}{2} > \frac{1}{2} (\frac{1}{\sqrt{e}} + \frac{1}{e})$$
,所以 $2a - \frac{1}{\sqrt{e}} > \frac{1}{e}$,即 $F(x)_{\min} > G(x)_{\max}$.

当
$$a \ge \frac{1}{2}$$
时, $F(x) > G(x)$,即 $f(x) > g(x)$. ……12分

22. (12分)

【解析】(1) 依题意,椭圆的离心率为 $\frac{2}{3}$, $\triangle TF_1F_2$ 的面积最大为 $2\sqrt{5}$.

解之得, $c^2 = 4$, $a^2 = 9$, ……5分

所以椭圆的标准方程为 $\frac{x^2}{9} + \frac{y^2}{5} = 1 \cdots 6$ 分;

(2) 证明: 依题意, 直线 PQ 斜率不为 0.

设 PQ 的方程为 x = ty + 1, $P(x_1, y_1), Q(x_2, y_2)(y_1 > 0, y_2 < 0)$, M(x, y), 联立椭圆

方程,
$$\begin{cases} \frac{x^2}{9} + \frac{y^2}{5} = 1, \\ x = ty + 1 \end{cases}$$

得
$$(5t^2+9)y^2+10ty-40=0$$
, …… 7分

$$\mathbb{N} y_1 y_2 = \frac{-40}{5t^2 + 9}, y_1 + y_2 = \frac{-10t}{5t^2 + 9}, \quad y_1 y_2 = \frac{4(y_1 + y_2)}{t}, \quad \dots \quad 9 \text{ }$$

由
$$A, P, M$$
 三点共线可得 $\frac{y}{x+3} = \frac{y_1}{x_1+3}$,

由
$$B, Q, M$$
 三点共线可得 $\frac{y}{x-3} = \frac{y_2}{x_2-3}$,

两式相除可得
$$\frac{x-3}{x+3} = \frac{y_1(x_2-3)}{y_2(x_2+3)} = \frac{y_1(ty_2-2)}{y_2(ty_1+4)} = \frac{ty_1y_2-2y_1}{ty_2y_1+4y_2}$$

综上所述,直线 AP 与直线 BQ 相交于椭圆 C 外一点 M ,且点 M 在定直线上......12 分

方法二: 若
$$l \perp x$$
轴, 不妨设 $P(1, \frac{2\sqrt{10}}{3})$, $Q(1, -\frac{2\sqrt{10}}{3})$, 则直线 AP 的方程为

$$y = \frac{\sqrt{10}}{6}(x+3)$$
,则直线 BP 的方程为 $y = \frac{\sqrt{10}}{6}(x-3)$,联立可得,点 M 的坐标是 $(9,2\sqrt{10})$.

当直线l不与x轴垂直时,设直线l的方程是y=kx-k.分别设 $P(x_1,y_1)$, $Q(x_2,y_2)$.

由方程组
$$\begin{cases} y = kx - k, \\ \frac{x^2}{9} + \frac{y^2}{5} = 1. \end{cases}$$
 得, $(5+9k^2)x^2 - 18k^2x + 9k^2 - 45 = 0.$

$$\therefore x_1 + x_2 = \frac{18k^2}{5 + 9k^2}, \quad x_1 x_2 = \frac{9k^2 - 45}{5 + 9k^2}.$$

$$\therefore x_1 x_2 = 5x_1 + 5x_2 - 9, \quad \text{ED} \frac{12k(x_1 - 1)}{x_1 + 3} = \frac{6k(x_2 - 1)}{x_2 - 3}.$$

由条件可得, 直线 AP 的方程是 $y = \frac{k(x_1 - 1)}{x_1 + 3}(x + 3)$, 直线 BQ 的方程是

$$y = \frac{k(x_2 - 1)}{x_2 - 3}(x - 3).$$

所以,直线 AP 与直线 BQ 上的点的横坐标为 9 时,纵坐标相等,即此两直线交点 M 在直线 x=9 上,且点 M 在椭圆 C 外.

综上所述,直线AP与直线BQ相交于椭圆C外一点M,且点M在定直线上.